Applying Naive Bayesian Networks to Disease Prediction: a Systematic Review

نویسندگان

  • Mostafa Langarizadeh
  • Fateme Moghbeli
چکیده

INTRODUCTION Naive Bayesian networks (NBNs) are one of the most effective and simplest Bayesian networks for prediction. OBJECTIVE This paper aims to review published evidence about the application of NBNs in predicting disease and it tries to show NBNs as the fundamental algorithm for the best performance in comparison with other algorithms. METHODS PubMed was electronically checked for articles published between 2005 and 2015. For characterizing eligible articles, a comprehensive electronic searching method was conducted. Inclusion criteria were determined based on NBN and its effects on disease prediction. A total of 99 articles were found. After excluding the duplicates (n= 5), the titles and abstracts of 94 articles were skimmed according to the inclusion criteria. Finally, 38 articles remained. They were reviewed in full text and 15 articles were excluded. Eventually, 23 articles were selected which met our eligibility criteria and were included in this study. RESULT In this article, the use of NBN in predicting diseases was described. Finally, the results were reported in terms of Accuracy, Sensitivity, Specificity and Area under ROC curve (AUC). The last column in Table 2 shows the differences between NBNs and other algorithms. DISCUSSION This systematic review (23 studies, 53,725 patients) indicates that predicting diseases based on a NBN had the best performance in most diseases in comparison with the other algorithms. Finally in most cases NBN works better than other algorithms based on the reported accuracy. CONCLUSION The method, termed NBNs is proposed and can efficiently construct a prediction model for disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market

Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...

متن کامل

Bayesian Network Classifiers. An Application to Remote Sensing Image Classification

Different probabilistic models for classification and prediction problems are anlyzed in this article studying their behaviour and capability in data classification. To show the capability of Bayesian Networks to deal with classification problems four types of Bayesian Networks are introduced, a General Bayesian Network, the Naive Bayes, a Bayesian Network Augmented Naive Bayes and the Tree Aug...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Novel Approach for Cardiac Disease Prediction and Classification Using Intelligent Agents

The goal is to develop a novel approach for cardiac disease prediction and diagnosis using intelligent agents. Initially the symptoms are preprocessed using filter and wrapper based agents. The filter removes the missing or irrelevant symptoms. Wrapper is used to extract the data in the data set according to the threshold limits. Dependency of each symptom is identified using dependency checker...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2016